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Abstract

Despite the impressive performance of large multimodal
models (LMMs) in high-level visual tasks, their capacity for
image quality assessment (IQA) remains limited. One main
reason is that LMMs are primarily trained for high-level tasks
(e.g., image captioning), emphasizing unified image seman-
tics extraction under varied quality. Such semantic-aware yet
quality-insensitive perception bias inevitably leads to a heavy
reliance on image semantics when those LMMs are forced
for quality rating. In this paper, instead of retraining or tun-
ing an LMM costly, we propose a training-free debiasing
framework, in which the image quality prediction is rectified
by mitigating the bias caused by image semantics. Specifi-
cally, we first explore several semantic-preserving distortions
that can significantly degrade image quality while maintain-
ing identifiable semantics. By applying these specific distor-
tions to the query/test images, we ensure that the degraded
images are recognized as poor quality while their semantics
mainly remain. During quality inference, both a query image
and its corresponding degraded version are fed to the LMM
along with a prompt indicating that the query image qual-
ity should be inferred under the condition that the degraded
one is deemed poor quality. This prior condition effectively
aligns the LMM’s quality perception, as all degraded images
are consistently rated as poor quality, regardless of their se-
mantic variance. Finally, the quality scores of the query im-
age inferred under different prior conditions (degraded ver-
sions) are aggregated using a conditional probability model.
Extensive experiments on various IQA datasets show that our
debiasing framework could consistently enhance the LMM
performance.

Code — https://barrypan12138.github.io/Q-Debias/

Introduction
No-Reference Image Quality Assessment (NR-IQA) mod-
els aim to measure image quality in alignment with human
perception without any reference, playing a fundamental
role across various computer vision tasks (Wang and Bovik
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Figure 1: Illustration of perception bias in Large Multimodal
Model (LMM) during quality assessment. Image quality rat-
ings from the LMM (mPLUG-Owl3 (Ye et al. 2024)) were
obtained using the Q-Bench testing framework (Wu et al.
2023a). The LMM consistently assigns higher quality rat-
ings to images in the second row compared to the first,
despite both sets exhibiting similar quality distributions as
measured by Mean Opinion Scores (MOSs). This discrep-
ancy suggests that the LMM relies more on image semantics
than on low-level image clues for quality assessment.

2006). In the past decades, significant progress has been
witnessed in NR-IQA, including traditional hand-crafted
feature-based models (Chen et al. 2025) and deep learning-
based models (Chen et al. 2021). Despite the advancement,
current models still grapple with limited generalization ca-
pabilities on unseen scenes and distortions due to the signif-
icant distribution shifts between training and test sets. Re-
cently, the emergence of Large Multimodal Models (LMMs)
(OpenAI 2023) has demonstrated impressive generalization
abilities across various vision-language tasks, such as clas-
sification (Wang et al. 2023), image captioning (Yu et al.
2023), and visual question answering (Shang et al. 2024).



However, the focus on high-level visual tasks usually limits
their effectiveness in low-level tasks, such as IQA (Wu et al.
2023a; Sun et al. 2024). Although pioneering researchers
have attempted to fine-tune or retrain LMMs for improved
IQA accuracy (Wu et al. 2023b; Chen et al. 2024; Zhu et al.
2024), the laborious dataset construction and costly model
training usually render this approach inefficient. Moreover,
tuning LMMs specifically for IQA also introduces the risk
of catastrophic forgetting (Luo et al. 2023), compromising
the retention of general knowledge and ultimately degrading
the models’ capability on other tasks.

A powerful strategy to both retain the LMM’s strengths
across tasks and enhance its IQA performance is to unlock
its vast general knowledge through well-crafted prompts, en-
couraging the LMM to respond accurately to quality rating
requests. However, despite this potential, LMMs, driven by
training objectives that emphasize semantic extraction over
quality, usually default to interpreting image quality heav-
ily relying on image semantics. As shown in Fig. 1, two
sets of distorted images with different semantics are pre-
sented to an LMM for quality rating. The results indicate
that the LMM consistently prefers the quality of images with
the second set of semantics, despite both sets having simi-
lar quality (Mean Opinion Score (MOS)) distributions. The
case reveals that the LMM intrinsically bases its quality rat-
ing on image semantics rather than on quality-related clues
(e.g., blur). Motivated by this observation, we introduce an
innovative, training-free approach to mitigate the perception
bias inherent in LMMs. Our enhancement strategy consists
of two main steps: 1) bias exposure, and 2) bias mitigation.

In the bias exposure step , we assume the bias exists con-
sistently across images sharing the same semantics. Based
on this assumption, we can expose the perception bias of a
query/test image by measuring how much the LMM resists
labeling it as high quality when its quality is severely de-
graded but the semantics are preserved. To achieve this, we
explore several specific distortions that drastically corrupt
the image quality while preserving its semantics to some ex-
tent. For a query image, we then impose these distortions on
the query image and obtain its degraded versions. Herein,
those degraded images should be deemed as poor quality.
However, the LMM may not always agree with the fact and
the disagreement leads to the bias exposure.

In the bias mitigation step, we address the exposed bias
using an instructive conditional prompt. Specifically, during
inference, we provide both the query image and its degraded
version to the LMM, along with a prompt indicating that the
quality of the query image should be assessed under the
condition that the degraded counterpart is rated as poor
quality. By forcing the LMM to rate the quality of the de-
graded images appropriately, the bias mitigation in turn re-
fines the LMM’s quality prediction for the query image. Fi-
nally, the quality predictions under different distortions are
aggregated through a conditional probability model, further
improving the prediction accuracy. Before delving into de-
tail, we highlight our main contributions as follows:
• Investigation of Perception Bias in LMM for IQA. We

explore the perception bias inherent in LMM when used
for IQA. Our training-free approach, which requires no

task-specific fine-tuning, highlights a new pathway for
leveraging pre-trained LMM on unseen tasks.

• Conditional Prompt for Bias Mitigation. We introduce
a simple yet effective conditional prompt to mitigate the
semantic bias in quality assessment. The prompt encour-
ages the LMM to rate the image quality by aligning
the quality prediction of synthetically degraded images,
effectively reducing the bias caused by the semantics
varies. Additionally, a confidence-based quality aggrega-
tion model is designed, further enhancing the prediction
accuracy.

• Comprehensive Evaluation on Diverse Datasets and
Distortions. We extensively evaluated our method on
both natural and AI-generated images and the superior
performance underscores the high effectiveness of our
bias mitigation strategy. In addition, consistent improve-
ments across multiple LMMs also demonstrate the strong
generalization of our method, highlighting its potential to
successfully extend to future LMMs.

Methodology
Preliminary
Given a query image x, the typical prompt for the
LMM in IQA is exemplified as follows: #User:
Rate the quality of the image. Good or poor?
(Question) [IMAGE TOKEN](Image)
#Assistant: The quality of the image is
[SCORE TOKEN].

Based on the predicted logits of ‘good’ token (xgd) and
‘poor’ token (xpr) on the position of [SCORE TOKEN], the
image quality score y can be estimated by a SoftMax func-
tion:

p(y | x) = ex
gd

exgd + expr . (1)

However, the semantic bias inherent in the LMM usually re-
sults in unreliable quality estimation, as the inference heav-
ily relies on image semantics. To account for this, we adopt
a conditional probability model to mitigate the bias, which
can be formulated as follows,

p(y | x) = Ex′|xp (y | x, x′) p (x′ | x) , (2)

where x′ is a “conditional image” of x, whose quality has
been severely degraded while retaining similar semantics to
x. p (x′ | x) represents the probability distribution of the po-
tential degradation results. During inference, both the condi-
tional image and the query image are fed to the LMM with a
prompt instructing the LMM to rate the quality of the query
image, under the condition that the conditional image is con-
sidered of poor quality. Our design philosophy is to guide
the LMM toward confidently and accurately classifying the
degraded images as poor quality, reducing its high reliance
on image semantics in quality inference. This bias mitiga-
tion can, in turn, be propagated to the query image quality
inference, assuming that the bias is consistently present in
images with similar semantics but varying distortions.



Figure 2: The framework of our perception bias mitigation scheme. It mainly consists of two components: 1) Bias Exposure:
Specific distortions are imposed on the query image to significantly degrade the query image quality while preserving its
semantics. The disagreement that the LMM rates those distorted images as poor quality exposes the perception bias inherent in
the LMM. 2) Bias Mitigation: Dedicated prompts are defined to mitigate the bias by forcing that the quality of the query image
should be assessed under the condition that its degraded counterpart is rated as poor quality. The final quality is then estimated
by a semantic similarity based aggregation.

Framework of Perception Bias Mitigation
Guided by the model constructed in Eqn. (2), we design
our framework mainly comprises two components: 1) Bias
Exposure. Specific distortions that significantly degrade
image quality while preserving semantics are explored and
imposed on the query image to construct different condi-
tional images p (x′ | x). 2) Bias Mitigation. A dedicated
prompt is designed to estimate p (y | x, x′) across different
conditional images and obtain the final quality by Eqn. (2).
Our framework is illustrated in Fig. 2 and each component
is detailed as follows.

Bias Exposure Given a query image, we examine four
typical distortions—zoom blur, spatter noise, saturation
enlargement, and fog corruption—to effectively degrade
the image quality while preserving its semantic content.
Specifically:

Zoom Blur. The zoom blur distortion usually occurs when
a camera moves toward an object rapidly, which can be sim-
ulated by

x′
1(u, v) =

1

n

n∑
i=1

xzi(u, v), (3)

where xzi means the zoom result of the query image x by a
factor zi and a total of n factors are adopted. x′

0(u, v) means
the zoom blur results at position (u, v).

Spatter Noise. We use spatter noise to mimic the distortion
caused by an unclean camera lens due to bad weather con-
ditions such as rain, mud, or dust, which can be generated
by

x′
2(u, v) = x(u, v)·(1−M(u, v))+C(u, v)·M(u, v), (4)

where M(u, v) is the spatter mask indicating regions that
are affected or unaffected, and C(u, v) represents the
specific color distribution adapted for different splatter
types. Herein, we use the implementation in (Hendrycks
and Dietterich 2019) to generate M(u, v) and C(u, v).

Saturation Enlargement. The saturation distortion modi-
fies the saturation channel of an image in the HSV color
space based on the severity parameter c0, which can be de-
fined by

x′
3 = fhsv2rgb(xh, x

′
s, xv), (5)

with
x′
s = clip (xs · c, 0, 1) , (6)

where xh, xs, and xv represent the hue, saturation, and
value components of x in HSV space, respectively. x′

s
denotes the distorted saturation. The function fhsv2rgb(·)
converts the image from HSV to RGB space, while clip(·)
ensures that the distorted results are clipped to a valid range.

Fog Corruption. We simulate a foggy environment by ap-
plying a haze effect to the query image as follows:

x′
4 = clip

(
x+ k · xF , 0, 1

)
, (7)



Figure 3: Illustration of the four distortion types which could degrade image quality significantly while largely preserving its
semantics.

where the xF is the fog pattern generated by a diamond-
square algorithm (Fournier, Fussell, and Carpenter 1982;
Hendrycks and Dietterich 2019) based on x. k is the hyper-
parameter of distortion severity. As shown in Fig. 3, the four
types of distortion degrade the image quality significantly
while the semantics are still recognizable, leading to an ex-
pected bia exposure when they are not deemed poor quality
by the LMM.

Bias Mitigation Based on the generated conditional im-
ages for each query image, we then input the query image
(x) and one of its counterparts (x′

i) into the LMM, using a
specific prompt to propagate the bias mitigation effect from
the conditional image to the query image.
#User: The visual quality of the first image
is poor. How about the visual quality of
the second image? Good or poor? (Question)
[IMAGE TOKEN1, IMAGE TOKEN2].(Image1, Image2)
#Assistant: The quality of the image is
[SCORE TOKEN].
Then, the conditional quality probability can be estimated as
follows:

p(y | x, x′
i) =

ex
gd

exgd + expr . (8)

Finally, we aggregate the quality estimation across the four
distortion types:

p(y | x) =
4∑

i=1

p (y | x, x′
i) p (xi

′ | x) , (9)

where p (x′
i | x) is the probability that the distorted im-

age is adopted as the condition. We leverage the seman-
tic similarity between x and x′ to estimate this probabil-
ity, based on the assumption that the more semantic infor-
mation maintained, the more confidently the image can be
considered as a condition. We achieve the semantic simi-
larity estimation by feeding another prompt to the LMM
as follows, #User: Do these two images describe
the same object? Yes or no? (Question)
#Assistant: [SCORE TOKEN]. This yields

p (xi
′ | x) = ewi∑4

i=1 e
wi

, (10)

with

wi =
ex

yes
i

ex
yes
i + ex

no
i

. (11)

Experiments

Experimental Settings

Datasets. We evaluate our method on five publicly available
datasets: LIVE Challenge (Ghadiyaram and Bovik 2015),
KonIQ-10k (Hosu et al. 2020), AGIQA-3k (Li et al. 2023),
KADID-10k (Lin, Hosu, and Saupe 2019), and SPAQ (Fang
et al. 2020). The KonIQ-10k, SPAQ, and LIVE Challenge
datasets are in-the-wild image collections, featuring authen-
tic distortions. KonIQ-10k and SPAQ datasets each contain
over 10,000 images and the SPAQ dataset is specifically
designed to assess the quality of images captured by
smartphones. The KADID-10k dataset comprises 10,125
images with various systematic distortions. The AGIQA-3k
dataset includes 2,900 images focused on AI-generated
image quality assessment.

Comparison Methods. We denote our method as “Q-
Debias” and compare its performance against both
training-free (opinion-unaware) and training-based methods
across multiple datasets. The training-free methods include
BLINDS-II (Moorthy and Bovik 2010), BRISQUE (Mittal,
Moorthy, and Bovik 2012), NIQE (Mittal, Soundararajan,
and Bovik 2012), NPQI (Liu et al. 2020), ContentSep (Babu,
Kannan, and Soundararajan 2023), CLIP-IQA (Wang, Chan,
and Loy 2023), MDFS (Ni et al. 2024), and Q-Bench (Wu
et al. 2023a). In particular, Q-Bench refers to using the same
LMM (mPLUG-Owl3) with our method, while applying the
query prompt from Q-Bench. For the training-based meth-
ods, we adopt models trained on the large-scale KonIQ-10k
dataset for comparison, including ARNIQA (Agnolucci
et al. 2024), TReS (Golestaneh, Dadsetan, and Kitani 2022),
and MUSIQ (Ke et al. 2021). We list their performance in
cross-dataset settings to verify their generalization capabil-
ity. The Pearson Linear Correlation Coefficient (PLCC) and
the Spearman Rank-Order Correlation Coefficient (SRCC)
are used as metrics to assess the linearity and monotonicity
of our quality predictions.

Implementation Details. We select mPLUG-Owl3 as our
LMM due to its superior performance on image processing
tasks. We set zi ∈ {1.00, 1.01, 1.02, . . . , 1.10}, n = 11 in
Eqn. (3), and c = 2.0 in Eqn. (6). We set k = 2.5 in Eqn. (7).



Figure 4: Visualization of image quality prediction results. In each subfigure, the top-left label shows numbers in green, blue
and red, representing the MOS, the LMM prediction result with the prompt in Q-Bench and our result, respectively.

Comparison with NR-IQA Models

Prediction Accuracy. As shown in Table 1, compared with
existing training-free methods, our model Q-Debias con-
sistently achieves the best performance across the first five
IQA datasets. In particular, most hand-crafted feature-based
models (e.g., NIQE) experience a significant performance
drop on the KADID-10k dataset due to the diverse distor-
tion types involved. However, our method still outperforms
these models by a large margin, demonstrating its high effec-
tiveness. Compared to the vanilla prompt used in Q-Bench,
our method while utilizing the same base LMM (mPLUG-
Owl3), achieves performance gains across all five datasets.

In comparison to training-free methods, training-based
models generally deliver superior results, benefiting from
the quality assessment knowledge learned from large-scale
datasets. However, due to the fact that KonIQ-10k only con-
tains authentic distortions, these models often underperform
on unseen distortions when tested on datasets involving
unseen distortions (e.g., TReS: 0.771 on LIVE Challenge
vs 0.468 on KADID-10k, MUSIQ: 0.788 on LIVE Chal-
lenge vs 0.630 on AGIQA-3k), highlighting the overfitting
dilemma during training. In contrast, our approach improves
the LMM in a training-free manner, providing superior
generalization capability across authentic, systemic, and
AI-generated distortions.

Visualization. To verify the effectiveness of our method, we

visualize our predicted results alongside the LMM predic-
tions using the Q-Bench prompt on the KADID-10k dataset
(first two rows) and the AIGC-3k dataset (second two rows).

As shown in Fig. 4, we can observe that: 1) Despite com-
parable distortions and closely aligned MOS distributions in
the first two rows, the LMM without our debiasing enhance-
ment consistently assigns higher quality ratings to images in
the first row over the second. This observation underscores
the model’s high reliance on semantic content rather than
low-level clues for quality assessment, revealing the pres-
ence of perceptual bias. 2) The bias varies by semantic con-
tent, affecting both natural and AI-generated images. In con-
trast, our debias strategy could effectively mitigate such bias,
resulting in predictions that are more consistent with human
ratings (i.e., MOSs).

Generalization on other LMMs
In our method, we adopted the multimodal model mPLUG-
Owl3 as our foundation model. To demonstrate the gener-
alization capability of our enhancement strategy, we fur-
ther validate it on another four LMMs inducing: Bak-
LLaVA (Liu et al. 2024), Qwen-VL (Bai et al. 2023),
LLaVA-OneVision (Li et al. 2024a), LLaVA-Interleave (Li
et al. 2024b) and DeepSeek-VL2 (Wu et al. 2024). As shown
in Table 2, we could observe a consistent average perfor-
mance gains can be achieved. Notably, the improvements
observed on the LIVE Challenge and AGIQA-3k datasets
suggest that semantic bias is widespread across diverse con-



Table 1: Performance comparison of our method, Q-Debias, against both training-free and training-based IQA models. The
percentage indicates the improvement of our method over Q-Bench. The best two results are highlighted in boldface.

Methods Training-free? LIVE Challenge KonIQ-10k AGIQA-3k KADID-10k SPAQ
(Training set) SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

BLIINDS-II (Moorthy and Bovik 2010) ✓ 0.090 0.107 0.585 0.598 0.454 0.510 0.224 0.313 0.317 0.326
QAC (Xue, Zhang, and Mou 2013) ✓ 0.226 0.284 0.340 0.291 - - 0.239 0.309 0.440 0.450
BRISQUE (Mittal, Moorthy, and Bovik 2012) ✓ 0.561 0.598 0.705 0.707 0.493 0.533 0.330 0.370 0.484 0.481
NIQE (Mittal, Soundararajan, and Bovik 2012) ✓ 0.463 0.491 0.551 0.488 0.528 0.520 0.379 0.389 0.703 0.671
ILNIQE (Zhang, Zhang, and Bovik 2015) ✓ 0.439 0.503 0.505 0.496 0.594 0.623 0.540 0.534 0.696 0.637
NPQI (Liu et al. 2020) ✓ 0.475 0.490 0.613 0.614 0.658 0.714 0.391 0.340 0.600 0.616
ContentSep (Babu, Kannan, and Soundararajan 2023) ✓ 0.506 0.513 0.640 0.627 - - 0.506 0.357 0.708 0.665
CLIP-IQA (Wang, Chan, and Loy 2023) ✓ 0.612 0.594 0.695 0.727 0.658 0.714 0.500 0.520 0.738 0.735
MDFS (Ni et al. 2024) ✓ 0.482 0.536 0.733 0.712 0.672 0.676 0.598 0.594 0.741 0.718
ARNIQA (Agnolucci et al. 2024) ✗ (KonIQ-10k) 0.670 0.715 - - 0.621 0.694 0.725 0.717 0.576 0.577
TReS (Golestaneh, Dadsetan, and Kitani 2022) ✗ (KonIQ-10k) 0.771 0.805 - - 0.652 0.737 0.468 0.492 0.418 0.417
MUSIQ (Ke et al. 2021) ✗ (KonIQ-10k) 0.788 0.824 - - 0.630 0.722 0.556 0.575 0.726 0.738
Q-Bench * (Wu et al. 2023a) ✓ 0.721 0.677 0.672 0.573 0.596 0.469 0.315 0.267 0.767 0.650
Q-Debias (Ours) ✓ 0.794 0.818 0.838 0.863 0.717 0.753 0.700 0.753 0.867 0.826
Improvement over Q-bench ↑ 10.1% ↑ 20.8% ↑ 24.7% ↑ 50.6% ↑ 20.3% ↑ 60.6% ↑ 122.2% ↑ 167.0% ↑ 13.0% ↑ 27.1%
* We use the same quality query prompt from Q-Bench and set the LMM as mPLUG-0wl3, consistent with our method.

Table 2: Performance improvement on other LMMs.

Models

LIVE Challenge AGIQA-3k Average

Vanilla prompt Our debias prompt Vanilla prompt Our debias prompt Vanilla prompt Our debias prompt

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

BakLLaVA (Liu et al. 2024) 0.090 0.108 0.263 ( ↑ 192.0%) 0.265 ( ↑ 145.0%) 0.480 0.321 0.460 0.482 ( ↑ 50.2%) 0.285 0.215 0.362 ( ↑ 27.0%) 0.374 ( ↑ 74.0%)
Qwen-VL (Bai et al. 2023) 0.470 0.546 0.504 ( ↑ 7.20%) 0.501 0.504 0.532 0.615 ( ↑ 22.0%) 0.623 ( ↑ 17.1%) 0.487 0.539 0.560 ( ↑ 15.0%) 0.562 ( ↑ 4.27%)
LLaVA-OneVision (Li et al. 2024a) 0.379 0.654 0.631 ( ↑ 66.5%) 0.649 0.581 0.781 0.707 ( ↑ 8.94%) 0.806 ( ↑ 14.0%) 0.480 0.718 0.669 ( ↑ 39.4%) 0.728( ↑ 1.39%)
LLaVA-Interleave (Li et al. 2024b) 0.221 0.337 0.454 ( ↑ 100.5%) 0.543 ( ↑ 61.1%) 0.223 0.315 0.464 ( ↑ 108.1%) 0.560 ( ↑ 77.8%) 0.222 0.326 0.459 ( ↑ 106.8%) 0.552( ↑ 69.3%)
DeepSeek-VL2 (Wu et al. 2024) 0.800 0.851 0.822 ( ↑ 2.75%) 0.860 ( ↑ 1.06%) 0.606 0.655 0.759 ( ↑ 25.2%) 0.778 ( ↑ 17.0%) 0.703 0.753 0.791 ( ↑ 12.5%) 0.819( ↑ 8.76%)

Table 3: Ablation study of different types of conditional im-
ages. The best results in each setting are highlighted in bold-
face.

Exp. ID Single Distortion Semantic
Consistency

LIVE Challenge AGIQA-3k Average

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

1
Blur

Zoom ✓ 0.644 0.673 0.633 0.658 0.639 0.666
2 Motion ✓ 0.497 0.515 0.552 0.546 0.525 0.531
3 Gaussian ✓ 0.617 0.497 0.636 0.648 0.627 0.573

4
Noise

Gaussian ✓ 0.677 0.646 0.686 0.720 0.682 0.683
5 Spatter ✓ 0.762 0.799 0.713 0.768 0.738 0.784
6

Bad weather
Snow ✓ 0.713 0.761 0.686 0.640 0.700 0.701

7 Frost ✓ 0.632 0.705 0.633 0.573 0.633 0.639
8 Fog ✓ 0.729 0.763 0.689 0.702 0.709 0.733
9 Brightness ✓ 0.613 0.673 0.620 0.668 0.617 0.671

10 Saturation ✓ 0.784 0.790 0.720 0.735 0.752 0.763
Multiple Distortions

Exp. ID Zoom Spatter Fog Saturation Semantic SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

11 ✗ ✗ ✗ ✗ ✗ 0.721 0.677 0.596 0.469 0.659 0.573
12 ✗ ✓ ✗ ✓ ✓ 0.793 0.790 0.709 0.712 0.751 0.763
13 ✗ ✓ ✓ ✓ ✓ 0.793 0.773 0.714 0.702 0.753 0.738
14 ✓ ✓ ✓ ✓ ✗ 0.493 0.472 0.518 0.508 0.506 0.490

Q-Debias ✓ ✓ ✓ ✓ ✓ 0.794 0.818 0.717 0.753 0.756 0.786

tent types and such bias can be mitigated by our method ef-
ficiently. The promising generalization capability highlights
the transformative potential of our bias-mitigation strategy
and opens up exciting new avenues for developing training-
free enhancement methods to fully harness the potential of
LMMs for unseen tasks.

Ablation Studies
Three main components are designed in our debias scheme:
1) the conditional images, 2) the instructive prompt, and 3)
the aggregation scheme. To verify the effectiveness of each
component, we ablate each component from our scheme
and verify their effectiveness as follows.

Study of Conditional Images. In our method, distortion
types are carefully selected to degrade image quality while
preserving semantic content. Specifically, we explore five

Table 4: Ablation study of instructive prompt.

Prompt
LIVE Challenge KonIQ-10k AGIQA-3k

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

T1 0.784 0.762 0.805 0.816 0.703 0.682
T2 0.785 0.762 0.813 0.847 0.705 0.702
T3 0.741 0.730 0.811 0.845 0.672 0.686

Q-Debias 0.794 0.818 0.838 0.863 0.717 0.753

types of distortions for conditional image construction: blur,
noise, adverse weather conditions, brightness adjust-
ment, and saturation modification. For blur distortion, we
consider zoom blur, motion blur, and Gaussian blur, while
for noise distortion, we examine Gaussian noise and spat-
ter noise. Additionally, we synthesize significant snow, frost,
and fog distortions, as humans can still recognize objects
in images captured under adverse weather conditions. The
study results are summarized in Table 3.

From Table 3, we observe that all distortion types enhance
AI-generated images in the AGIQA-3k dataset, whereas
only a subset (e.g., spatter noise and saturation modification)
improves quality prediction for natural images in the LIVE
Challenge dataset. This suggests that perception bias in AI-
generated images is more pronounced, making performance
gains more detectable. A potential explanation is that LMMs
have been exposed to significantly fewer AI-generated im-
ages compared to natural images during training due to the
vast historical disparity in dataset sizes. Moreover, different
distortion types exhibit varying effectiveness in bias mitiga-
tion, underscoring the importance of careful distortion de-
sign, as bias levels are highly dependent on image seman-
tics. To develop a generalized and effective bias mitigation
strategy, we further explore potential combinations of the ex-



amined distortions. Given the exponential growth in possi-
ble combinations, we evaluate a four-distortion combination
scheme, selecting the most effective distortion from each
category. The results demonstrate that incorporating diverse
distortion types yields the highest performance gains, high-
lighting their complementary roles in mitigating bias.

In our approach, distortions are applied directly to the
query image to generate degraded versions while maintain-
ing semantic consistency. To assess the necessity of seman-
tic consistency, we further investigate the use of condition-
ally distorted images with mismatched semantics. Specifi-
cally, we construct an additional conditional image set by
applying the four selected distortions to open-source im-
ages that do not share semantic content with those in the
LIVE Challenge and AGIQA-3k datasets. For each qual-
ity inference, we randomly select four low-quality images
from this set as conditional images. The results, presented
in Exp. 14 of Table 3, show a significant performance drop
when semantically inconsistent images are used, reinforc-
ing the critical role of semantic alignment in bias mitiga-
tion. This finding highlights that bias is highly semantic-
specific—leveraging conditionally degraded images that
align with the query image semantics enables more accurate
bias estimation and ultimately improves quality prediction.

It is important to note that our four-distortion combina-
tion represents just one potential bias mitigation strategy.
Further exploration of different distortion combinations
may yield superior performance. Nonetheless, our findings
provide a strong foundation for refining and optimizing bias
mitigation techniques in image quality assessment.

Study of Instructive Prompt. In our method, the prompt
serves an instructive role for the LMM, facilitating the
propagation of bias mitigation from the conditional im-
ages to the query image. To verify its effectiveness, we
compare our method against three prompt variants: (T1)
Prompt Replacement: The entire prompt is replaced with
“Rate the quality of the second image. Good
or poor?” (T2) Bias Exposure Ablation: The phrase
“The visual quality of the first image is poor” is removed
from our prompt to examine the role of bias exposure,
leading to the second prompt: “How about the visual
quality of the second image? Good or poor?”
(T3) Bias Mitigation Propagation Ablation: We delete the
“How about” from the prompt to assess the impact of bias
mitigation propagation to the query image, resulting in
the third prompt: “The visual quality of the first
image is poor. Rate the visual quality of the
second image. Good or poor?” As shown in Table 4,
the results reveal that: 1) Without our instructive prompt,
even with the conditional images provided, bias cannot
be effectively mitigated. 2) Without the explicit indication
that the conditional images are of poor quality, the LMM
fails to recognize the bias exposure, resulting in a marked
performance drop. 3) The phrase “How about” suggests that
the LMM should infer the query image’s quality based on
the prior understanding that the conditional images are of
poor quality. Without this phrase, the propagation of bias
mitigation from the conditional images to the query image

weakens noticeably. The best results are achieved when the
full prompt is included, demonstrating the necessity of each
instruction in our prompt.

Table 5: Ablation study of different aggregation schemes.

Aggregation Scheme
LIVE Challenge KonIQ-10k AGIQA-3k

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

Average 0.789 0.754 0.824 0.838 0.711 0.691
Quality Similarity 0.785 0.740 0.817 0.827 0.710 0.683
Winner-Takes- All 0.632 0.491 0.750 0.660 0.623 0.529

Q-Debias 0.794 0.818 0.838 0.863 0.717 0.753

Study of Aggregation Scheme. To aggregate the quality
scores derived from different conditional images, we intro-
duce a semantic similarity aggregation strategy. To assess
its effectiveness, we compare our method with four alter-
native schemes: 1) Average Aggregation: Each of the four
quality scores is assigned an equal weight during aggre-
gation. 2) Quality Similarity Aggregation: We utilize the
widely adopted FR-IQA model, LPIPS (Zhang et al. 2018),
to measure the quality similarity between the query image
and each of its conditional images. These quality similar-
ity scores are then treated as weights for the aggregation.
3) Winner-Takes-All: The final quality score is determined
solely by the quality score obtained from the conditional
image that exhibits the highest semantic similarity to the
query image. The results are presented in Table 5, which
reveal that: 1) The Average scheme results in a noticeable
performance drop, suggesting that uniform weighting fails
to account for the bias variations across different types of
distortions. 2) The Quality Similarity scheme is also inef-
fective. The possible reason may lie that a higher quality
similarity score does not always correspond to a higher se-
mantic recognition for the LMM, due to perceptual discrep-
ancy between the LMM and the human visual system. 3)
The Winner-Takes-All scheme, though commonly used for
score aggregation, demonstrates suboptimal performance as
it fails to adequately capture the nuanced contributions of
different conditional images. In comparison, our semantic
similarity aggregation scheme delivers the best performance
across, demonstrating superior generalization on diverse im-
age distortions.

Conclusion
In this paper, we propose a training-free scheme to enhance
the LMM in the IQA task. In particular, the perception bias
that the LMM infers image quality highly relies on image
semantics is mitigated by introducing conditional images in
the prompt. These conditional images share the similar se-
mantics as the query image but experience degraded quality.
By instructing the LMM to align its quality ratings on those
conditional images, the alignment in turn forces the LMM
to rectify their judgment on the query image. Experimental
results on images with different distortions verify the effec-
tiveness of our method, and the generalization capability of
our scheme across other LMMs highlights the potential for
advanced prompt designs to fully leverage LMM knowledge
for unseen tasks.
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